

Persistent Elevated Mortality in salmon

farming in Scotland - the Scottish Government's Methodological Approach

Summary

It is important to understand whether some salmon farms have recurring, persistently high rates of mortality, due to their unhealthy locations or poor management. The Scottish Government has promised to test this by analysing mortality data, but it seems that the results are not yet available. The Coastal Communities Network (CCN) has worked with a data analyst to mirror the Scottish Government's methodology, giving an insight into the likely results of the Government's analysis and revealing some serious flaws.

CCN believes that the Scottish Government's methodology is not fit for the purpose of reducing the very high toll of deaths and poor animal welfare that exist in Scotland's fish farms. We urge the Rural Affairs and Islands Committee to challenge this methodology and to recommend a "three strikes and you are out" approach, whereby any farm that experiences mass mortality three times must be reduced in size, closed or relocated (conditional on following the normal consenting process).

Main points:

- The Government's analysis only applies to the marine part of the production of salmon. The freshwater stage has massive mortality as well. It is wrong not to consider both.
- The Government's methodology only includes farms with monthly mortality rates in the worst 5%, sustained for at least two months, in two or more consecutive production cycles, and with the same cause of mortality. This filters out many farms with repeated mass mortality events. Even so, between 2018 and October 2025¹, **24 farms** did fit all these criteria and **five farms** triggered all of the criteria twice. This only begins to show the extent of the problem.
- CCN believes that the Government has set the bar much too high. We have explored the consequences of including farms with the worst 10% and 25% of mortality events. This has a significant impact on the number of problem farms.

When the worst 10% are included, **79 farms** (38% of the total) satisfy all the Government's other criteria, instead of 24. Including the worst 25% puts well over half of all Scotland's salmon farms (**117 farms**) on the problem list.

Including the worst ten percent of mortality events is an entirely reasonable definition of "elevated" mortality. Including the worst 25% of mortality is also reasonable – that is still well above the average in most years.

¹ Using Salmon Scotland's monthly mortality data, as the Scottish Government is doing.

- The Government's methodology requires mortality events to have the same cause (Persistence) but this approach is flawed. Salmon Scotland and the Government have ten categories for the causes of mortality, following the Farmed Fish Health Framework. None of these is specifically for the fish killed by treatments administered by farmers, so treatment deaths are lumped with those caused by various diseases and sea lice, making it impossible to know how many fish die due to treatments, the most important non-infectious killer of farmed fish, according to Mowi.²
- Cleaner fish mortality seems to be excluded. Deaths of smolts in their first six weeks at sea may also be excluded, and, it seems, so are culls of moribund fish following mass mortality events.
- Many mass mortality events are multifactorial, triggered by gill disease and/or natural events that injure fishes' gills, then exacerbated by other diseases, by sea lice and by treatments administered on farms. Assigning cause(s) to these complex situations does not clarify how many fish died due to each. The way causes are assigned could bias which farms are filtered in or out.
- Dropping the need for the cause of mortality to be the same would put **36 farms** on the list³. Including the worst 10% of mortality puts **96 farms** on the list, and if you include the worst 25% of farm mortality figures, without the same cause, then **179 farms** would qualify.
- We have also looked further back, using SEPA's data from 2002 to Oct 2025, as the Government is doing. **76 farms** met its elevated (worst 5%), recurrent criteria, without the cause of death being the same (as SEPA does not record the causes of mortality).
There is a rising trend of farms meeting the Government's other criteria each year.
- The Government's analysis depends on merging three datasets⁴. CCN's analysis shows that they do not match. For example, SEPA's and Salmon Scotland's 2018 - Oct 2025 data flag the same 26 farms that fit the Government's criteria except for the cause of mortality (which SEPA doesn't record), but each dataset also flags 10 other, different farms, so 46 farms in total. This shows that the record keeping for salmon farm mortality is inconsistent and inadequate. It must be overhauled.
- The fourth stage of the Government's analysis offers farmers a chance to explain any mitigating circumstances. Mortality rates have exceeded 80% in some farms. It is right to ask the sector why, but not to carry on allowing this to recur, as happens at present.

CCN also explored another approach to identifying farms with recurrent high mortality, by simply listing all the farms that completed production cycles each year, in order of cumulative mortality.⁵

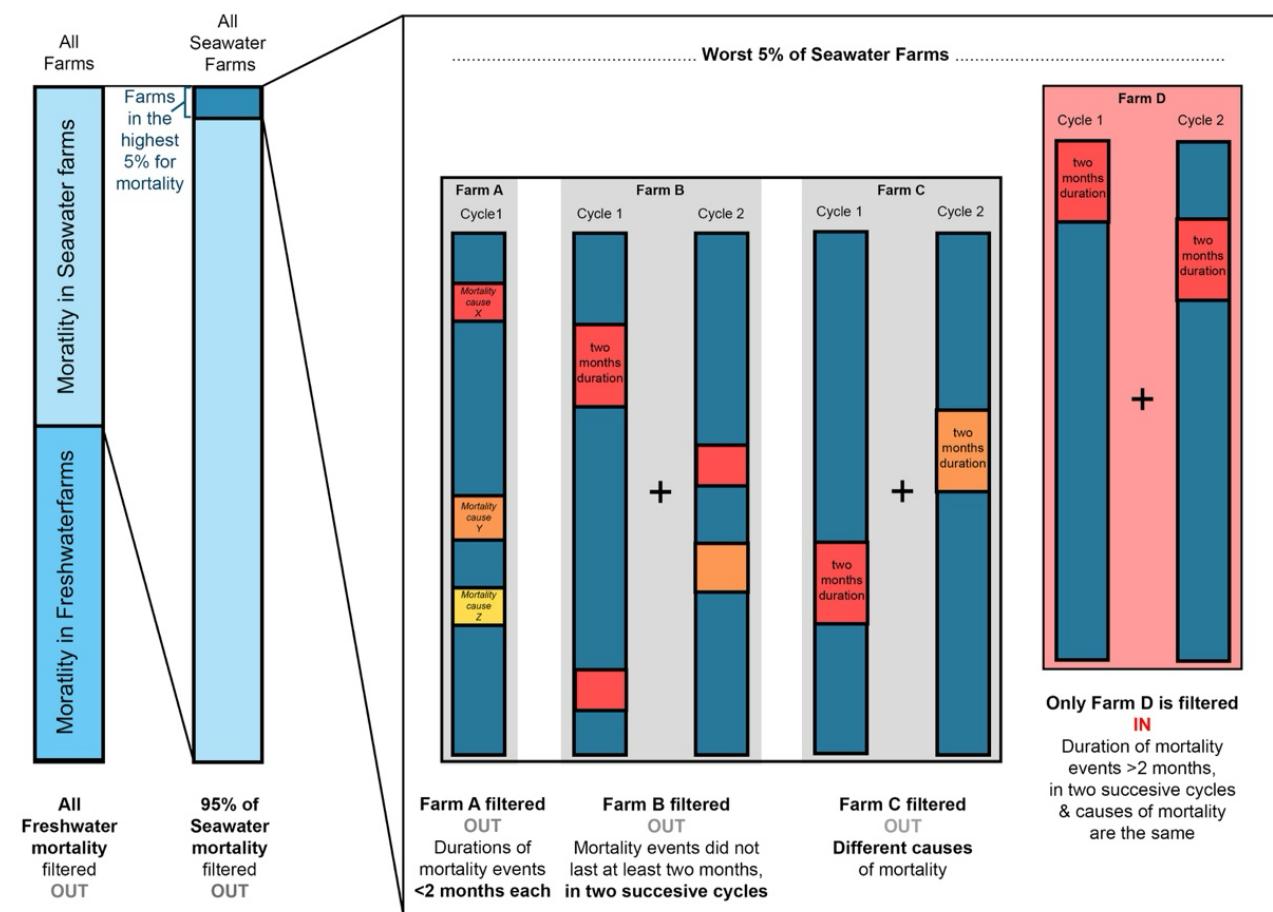
To interpret the lists, it is necessary to have an acceptable maximum mortality rate - something the Government refuses to do. What should that threshold be?

² According to [Mowi's 2024 Integrated Annual Report 2024](#) (page 226)

³ Using Salmon Scotland's data: 2018 - Oct 2025

⁴ SEPA's, Salmon Scotland's and FHI's

⁵ Using Salmon Scotland's data: 2018 - Oct 2025


In 2024, Mowi wrote to the REC Committee, saying that around 2011, its Scottish farms achieved 15% average mortality over an 18-month marine production cycle, and that about 7% mortality in 12 months has been achieved in marine salmon farms in the Faroes⁶. Perhaps this might equate to about 15% over a full cycle.

Mortality rates in Scotland's marine salmon farms have averaged far more than 15% for many years. In the Scottish Government's most recent figures, the rate averaged 38%.

Even 15% mortality would be considered high in any other type of livestock farming (and this is only for the marine phase). The union representing Norwegian fish farm vets recently threatened to strike unless annual mortality there was reduced to 5% per year, in line with other types of farming.

The annual lists show that a significant proportion of farms are contributing to the high mortality rates. For example, to have achieved an overall 15% average for the farms that completed their cycles in 2023, as many as 40 would have had to reduce their mortality to that level or be closed. Likewise with 47% of the farms that completed their cycles in 2024. In all years except 2021, fewer than half of farms managed to keep their overall mortality below 15%. There are not just a few farms biasing the results.

A summary of the Scottish Government's proposed methodology for assessing elevated, recurrent and persistent mortality in marine salmon farms. It will exclude many farms that have repeatedly high mortality, due to being sited in unhealthy locations, or to being poorly managed.

⁶ [Salmon farming in Scotland. Follow up information from the RECC evidence session on 2 October 2024 with Salmon Scotland. 25 November 2024.](#)

Background

The RAIC's recommendation

In the Rural Affairs and Islands Committee's 2024 report on Progress on the 2018 Rural Economy and Connectivity Committee Inquiry's recommendations, the RAIC notes:

"...the REC Committee recommendations for no expansion at sites with high mortality and for 'robust intervention' when serious mortality events occur have not been implemented."

"The Committee also notes the Cabinet Secretary's view that a threshold for intervention precipitated by a high mortality event would fail to recognise the wider context or that some are caused by factors outwith the fish farm's control. At the same time, however, the Committee believes further action is needed to improve the governance of fish health and welfare on farms to address gaps in accountability and enforcement around mortality."

"The Committee recommends, therefore, the Scottish Government provide powers to the Fish Health Inspectorate (or another appropriate body) to limit or halt production at sites which record persistent high mortality rates. The Scottish Government should work with industry and regulators to agree appropriate criteria and mortality thresholds for the use of these powers."

The Scottish Government's response

The Scottish Government's September 2025 Interim update on activities in response to the Rural Affairs and Islands Committee report on 'Salmon Farming in Scotland'⁷, includes:

Mortality analysis

- We will work to analyse mortality data, exploring thresholds for 'persistently high mortality' and whether fish farms with 'persistently high mortality' exist [2025/2026].

Progress update:

- We have developed a robust analytical framework to determine whether there is 'persistently high mortality' at Scottish production sites. The framework employs 3 qualified parameters for 'elevated', 'recurrent' and 'persistent' mortality to design a modelling approach that can help identify sites that potentially show 'persistent elevated mortality'. Annex A provides further information on the approach to the analysis.

- Quality assurance is being undertaken on the preliminary analytical model with a view to generating initial results later this year. Where there are sites screened as having 'persistent elevated mortality' under the analytical framework, we will engage with those operators to explore what actions are already taken by producers to prevent issues causing mortality persisting from year to year.

- By Spring 2026 we will provide a project report to the Rural Affairs and Islands Committee detailing both the finalised methods, the results of analysis, and the planned Scottish Government response to these.

The methodology mentioned (Annex A) is included at the end of this letter.

⁷ <https://www.parliament.scot/-/media/files/committees/rural-affairs-and-islands-committee/correspondence/2025/salmon-farming-in-scotland-23-september-2025.pdf>

Why this matters

This issue is important because enormous numbers of farmed salmon are suffering and dying. According to the Scottish Government's latest (2024) Fish Farm Production Survey⁸, 21,109,702 of the most recent cohort of farmed salmon (2022) died at sea, before harvest, and close to a third of a billion (329,062,000 fish) farmed salmon have died at sea since 1984.⁹

These figures exclude the very large number of deaths in the freshwater stage of salmon farming, which reached record levels in 2024.

Clearly this industry has a massive problem with mortality and fish welfare, on a wholly different scale to any other type of livestock farming, in terms of both the numbers and proportions of animals dying.

CCN believes that this situation is partly due to some farms being sited in inappropriate locations which are poor for fish health, or where farm management is routinely poor. These farms ought to be reduced in size or closed, but farms where mass mortality occurs regularly are usually restocked. These fishes' deaths must have been preceded by unnecessary suffering but no fish farm operator has ever faced any sanctions for having allowed that suffering to occur, even though repeatedly restocking a farm with a history of high mortality, and therefore a high likelihood of animal suffering in future, seems contrary to the 2006 Animal Health and Welfare Act (Scotland).

It is reasonable to expect that the Government's methodology for assessing recurring, persistently high mortality would be designed to reveal every occasion in which the 2006 Act might have been breached. CCN believes that the chosen methodology is too conservative to achieve this, in particular in how it defines "elevated", "recurrent" and "persistent" mortality. As a result, many problematic farms are likely to have been filtered out before the findings are reported to the RAIC.

This analysis is only being applied to seawater farms, even though mortality in the freshwater stage of salmon farming has reached an unprecedented level. According to the 2024 Fish Farm Production Survey, one in two of the salmon ova laid down to hatch, failed to result in a smolt that could be put to sea. The five worst mortality events reported to the FHI in 2025 were all in freshwater hatcheries, totalling more than 1.7 million dead fish.

FHI - Worst weekly mortality events 2025

1. [Applecross Smolt Unit](#) 522,145 deaths (16/06/25) ▼
2. [Inverkerry Smolt Unit](#) 343,184 deaths (01/09/25) ▼
3. [Lochalort Recirculation Hatchery](#) 314,759 deaths (18/08/25) ▼
4. [Inverkerry Smolt Unit](#) 303,075 deaths (08/09/25) ▼
5. [Lochalort Recirculation Hatchery](#) 290,074 deaths (11/08/25) ▼
6. [Gob na Hoe](#) 247,000 deaths (27/10/25) ▼
7. [Inchmore](#) 210,135 deaths (05/05/25) ▼
8. [Applecross Smolt Unit 2](#) 196,563 deaths (09/06/25) ▼
9. [Inverpolly](#) 189,736 deaths (14/07/25) ▼
10. [Applecross Smolt Unit](#) 182,967 deaths (12/05/25) ▼

Graphic: [FreeSalmon](#); Source: [FHI](#)

⁸ <https://www.gov.scot/binaries/content/documents/govscot/publications/statistics/2025/10/scottish-fish-farm-production-survey-2024/documents/scottish-fish-farm-production-survey-2024/scottish-fish-farm-production-survey-2024/govscot%3Adocument/scottish-fis>

⁹ Supplementary Tables <https://www.gov.scot/binaries/content/documents/govscot/publications/statistics/2025/10/scottish-fish-farm-production-survey-2024/documents/scottish-fish-farm-production-survey-2024-supplementary-tables/scottish-fish-farm-production-survey-2024-supplement>

CCN's analysis

Mirroring the Scottish Government's methodology

CCN has commissioned a data analyst to mirror the Government's proposed methodology. This allows us to see how many farms are likely to appear in the Government's list. It also lets us test the consequences of making different choices to the Government, by altering the thresholds that define "elevated" mortality, as well as "persistence". The results are discussed below.

The Scottish Government's methodology has four stages:

*Stage 1: Filtering farms for **elevated mortality** (above the 95th centile, i.e. the worst 5%),*

*Stage 2: Filtering farms with elevated mortality, to see which experienced it **recurrently** (i.e. an "elevated" incident lasting at least two months, in two or more successive production cycles),*

*Stage 3: Determining **persistence**, by filtering out farms with elevated, recurrent mortality, if their mortality events had **different causes**,*

Stage 4: Asking the industry to justify the high mortality in any farms that have not been filtered out already.

The bar has been set so high at each of these stages that CCN believes few farms will reach Stage 4. The diagram at the start of this document shows the high proportion of farms that will be excluded.

Mortality datasets that do not match

SEPA has collected mortality data from the industry since 2002, which it gives as the percentage of the total *weight* of fish in the farm. Salmon Scotland has reported monthly mortality for every marine farm since 2018, given as a percentage of the total *number* of fish in the farm. Their reporting dates do not match. These differences cause discrepancies between the datasets. We have not included FHI's dataset which is different again, due to its mortality reporting exemptions.

Salmon Scotland sometimes fails to report culls of moribund fish as mortalities.

For example, an FHI inspection of the Vuia Mor salmon farm¹⁰ found that: "Between 17th and 19th of April [2025], immediately post transfer a total of 155,500 fish were culled (55.3%). The following week a further 39,893 fish were culled which were removed by hand from the pens as they presented as moribunds".

However, Salmon Scotland's mortality report for Vuia Mor, for April 2025¹¹ (below) shows only 0.1% mortality, which is far too low to truly reflect the numbers of culled fish.

Company	Farm	Monthly mortality (%)	Notes	Cumulative mortality over full production cycle (%)
Bakkafrost Scotland	Vuia Mor	0.1		In Production

¹⁰ https://storage.googleapis.com/inspection_case_information/2025-0160_FS1103.pdf

¹¹ <https://www.salmonscotland.co.uk/reports/monthly-mortality-rate-april-2025>

SEPA's biomass data¹² also failed to include this mortality. SEPA's records for April 2025, show that there were 60,000kg of fish on site with only 395.3kg of mortalities, a 0.7% mortality rate.

Another example is Bakkafrost's Portree farm, where the company reported to its shareholders that, "the input mortality was 19% within the first 90 days".¹³ This very large mortality was not included in Salmon Scotland's monthly report, although SEPA's data does include it.

In general, the Salmon Scotland and SEPA datasets show similar patterns but do not match exactly. This results in discrepancies between the lists of problem farms produced using each dataset.

SEPA also does not collect data on the causes of mortality, and FHI's data on causes before 2018 is inconsistent with Salmon Scotland's since then. The Scottish Government has resorted to using AI to try to integrate FHI's dataset with the other two, in order to extend Stage 3 of its analysis earlier than 2018. CCN has not attempted to do this, as the AI filtering would inevitably be different from the Scottish Government's.

Below you will see that CCN believes Stage 3 (same cause of mortality) should be dropped altogether.

The results of CCN's analysis

1. Farms in the Salmon Scotland dataset (since 2018), that would trigger the Scottish Government's criteria for elevated, recurrent and persistent mortality

24 farms in the Salmon Scotland dataset met all the Scottish Government's criteria for elevated, recurrent, persistent mortality, at least once during the period Jan. 2018 to Oct. 2025.

Five of these farms triggered all the Scottish Government's criteria twice.

The total number of months during which some of these farms experienced elevated monthly mortality was considerably longer than the two months minimum criterion per production cycle. The worst had elevated mortality for 12 months in total, across two or more successive cycles.

2. Comparing the farms in the Salmon Scotland dataset, since 2018, to those in the SEPA dataset, since 2018, that would meet the same criteria

This analysis only examines which farms meet the elevated and recurrent criteria, as the SEPA dataset does not record the causes of mortality that enables the persistent criteria to be defined.

Requiring each cause of mortality to be the same is spurious, given that mass mortality is caused by a cascade of multiple causes, triggered by disease and/or a natural event, such as a harmful planktonic bloom or a micro-jellyfish swarm, killing many fish and compromising the gills of others.

¹² <https://aquaculture.scotland.gov.uk/Data/FishFarmMonthlyBiomassAndTreatmentReports>

¹³ <https://www.investing.com/news/transcripts/earnings-call-transcript-bakkafrost-q3-2025-sees-stock-rise-amid-operational-gains-93CH-4329239>

Afterwards, treating these sick fish for sea lice will cause many more to die, or make them more susceptible to diseases. It is very hard to prevent mass mortality once this downward spiral sets in.

Table 1., below, shows the farms that met the elevated, recurrent criteria in the Salmon Scotland dataset (2018 - Oct 2025), and in the SEPA dataset (2018 - Oct 2025), without the additional criterion for the cause to be the same (i.e. Persistent).

Salmon Scotland dataset	SEPA dataset
Djubawick	Djuba Wick
Druimyeon Bay	Druimyeon Bay
East Tarbert Bay	East Tarbert Bay
Fada	Eilean Fada Mor
Geasgill	Geasgill
Gometra	Gometra
Gravir Outer	Gravir Outer
Grimsay	Bagh Clann Neill (Grimsay)
Invertote	Invertote
Kishorn B (North)	Allt a Chois (Kishorn North Shore)
Kishorn C (West)	Kishorn Outer (Kishorn West)
Kyles Vuia	Kyles Vuia East
Lamlash	St Molios
Maaey	Maaey (East of Loch Uiskevagh)
Meall Mhor	Meall Mhor
North Shore East	Erisort, North Shore East
Oldany	Oldany
Plocrapool	Plocrapol
Portree	Loch Portree (Torvaig)
Reibinish	Reibinish
Rubha Stillraig	Rubha Stillraig
Sound of Harris	Sound of Harris (Groay-Lingay)
Tanera	Tanera 1+2
Taranaish	Taranaish
Vacasay	Vacasay, Roag
Vuia Mor	Vuia Mor South
Ardessie A	Ardintoul
Camas Glas	Bight of Foraness
Caolas a Deas West	Culnacnoc
Groatay	Lippie Geo (Site 2)
Hellisay	Port nan Ledaig (Lismore B)
Loch Alsh	Scallastle Bay
Loch Creran (B)	Spelve B
Noster	Strondoir Bay
Portree Outer	Taing of Railsborough
Rum	Teisti Geo

Key:
Meets criteria in both datasets
Meets criteria only in Salmon Scotland dataset
Meets criteria only in SEPA dataset

Table 1: Comparison of sites meeting the elevated, recurrent criteria from 2018 – PY 2025.

Note that Salmon Scotland and SEPA frequently use different names to identify farms - the farms named in the left and right columns of the green section of Table 1 are the same.

A total of **36 farms** met the elevated, recurrent criteria in the Salmon Scotland dataset (2018 - Oct 2025), without the additional criterion for the cause to be the same (Persistent) – the green and pink sections above.

A total of **36 farms** also met the elevated, recurrent criteria in the SEPA dataset (2018 - Oct 2025), without the additional criterion for the cause to be the same (Persistent) – the green and blue sections above.

However, the two lists of farms do not match entirely.

Of the farms meeting these criteria, 26 of the 36 farms are common between the two lists, so each list has 10 additional farms which trigger the criteria in only one of the Salmon Scotland and SEPA datasets – the pink and blue sections above.

Typically, the mortality pattern in the two datasets is similar but the exact values per month are different, creating the difference in the two farm lists.

This is symptomatic of any analysis that relies on official and industry data in Scotland. As flagged up by the RAI Committee, mortality data recording is inadequate, opaque and not sufficiently joined up between agencies, or with industry. An overhaul is urgently needed, given the severity of the problem and the lack of improvement.

These results show that at least **46 farms** either satisfy, or are very close to satisfying, the Scottish Government's criteria for elevated and recurrent mortality; **22% of active farms**.

3. Using the SEPA dataset to look back to 2002, at farms that satisfy the Scottish Government's elevated and recurrent mortality criteria

76 farms met the elevated, recurrent criteria in the SEPA dataset (2002 - Oct 2025), without including the additional criterion to ensure that the cause was the same (Persistent). SEPA does not record the causes of mortality.

Figure 1, below, shows that there is a rising trend in the percentage of farms meeting the elevated, recurrent criteria each year. Further confirmation that this problem is getting worse.

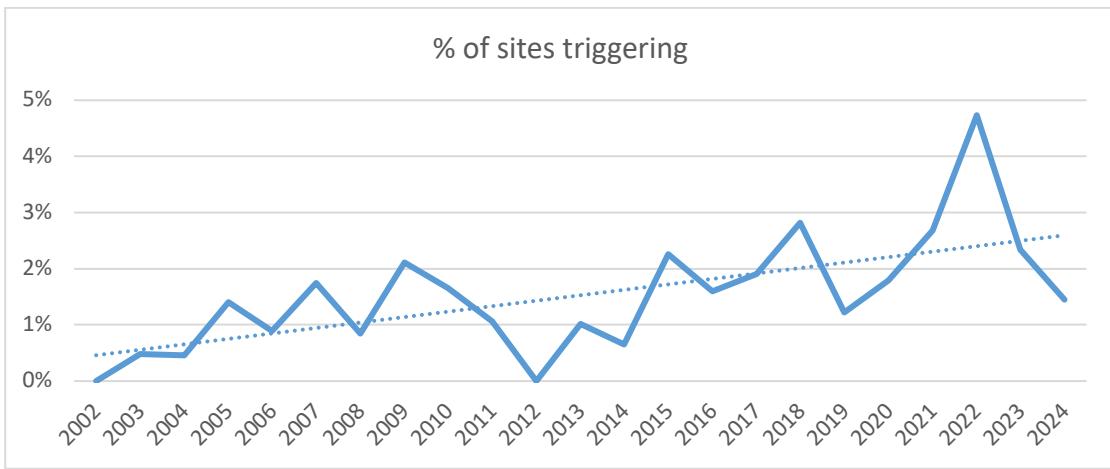


Figure 1: Percent of sites meeting elevated, recurrent criteria per year (SEPA 2002 - Oct 2025)

4. Adjusting the thresholds for the elevated and recurrent criteria, to examine how many farms would have triggered the criteria under these conditions

The Scottish Government's methodology sets a high bar for including farms in the list of those with elevated and recurrent mortality. This section examines the effect of altering these criteria within more reasonable bounds.

Stage 1: Elevated mortality

The Government's methodology includes only the farms where mortality was in the worst 5% (the 95th centile) – when mortality exceeded 5.68% per month, a figure apparently derived from data collected by SEPA since 2002. There is no justification for choosing such a high mortality rate. As a result, Stage 1 will filter out many farms with mortality that is far above average.

The analysis uses only a relative measure of mortality (centiles). This will allow the overall number of fish dying to rise in future, without increasing the number of farms defined as having elevated mortality. This is of a piece with the Scottish Government's refuse to define an absolute level of mortality that is unacceptable on fish farms, even though the typical level of mortality across the industry is already far higher than in any other livestock sector, such as beef production, which grows animals for a similar length of time.

In the absence of an absolute cap on mortality, CCN has examined the effect of lowering the threshold for percentage monthly mortality, to including the farms with the worst 10 percent of mortality rates (the 90th centile), and the worst 25% (the 75th centile).

As the Salmon Scotland and SEPA datasets differ, we have shown this for each dataset, in Tables 2a and 2b below.

Note that the SEPA dataset covers the full range of dates, back to 2002. More farms have existed during this time than are active now.

a) Salmon Scotland dataset (2018 – Oct 2025)

Elevated mortality definition	Elevated, recurring, persistent – i.e. with requirement for same cause code	Elevated, recurring – i.e. without requirement for same cause code
95 th centile (worst 5% only)	24 farms	36 farms
90 th centile (worst 10% only)	79 farms	96 farms
75 th centile (worst 25% only)	117 farms	179 farms

b) SEPA dataset (2002 – Oct 2025)

Elevated mortality definition	Elevated, recurring, persistent – i.e. with requirement for same cause code	Elevated, recurring – i.e. without requirement for same cause code
95 th centile (worst 5% only)	Not available	76 farms
90 th centile (worst 10% only)	Not available	155 farms
75 th centile (worst 25% only)	Not available	259 farms

Lowering the threshold for percentage monthly mortality has a significant impact on the number of problem farms, while still applying all the other Scottish Government criteria.

For example, Table 2a shows that by including the worst 10% of mortality events, **79 farms** in the Salmon Scotland dataset since 2018 would be on the problem list, rather than 24 farms, at the Government's 95th centile threshold (only the worst 5%).

Including the worst 10% of farms and dropping the spurious need for the causes of mortality to be the same (Persistent), would put **96 farms** on the list. That is almost half of Scotland's total

This is a more realistic starting point for making decisions about how to reduce overall mortality in the sector. Including the worst ten percent of mortality events is entirely reasonable. Doing so shows that the number of problem farms is at least three times higher than would otherwise be included, and four times higher if the causes of mortality are not the same.

If the worst 25% of mortality events are included, 117 farms in the Salmon Scotland dataset since 2018 would satisfy the Government's criteria for recurrent and persistent mortality. This is well over half of Scotland's active salmon farms.

Stage 2: Recurrent mortality

The Government has defined “recurrent” as elevated mortality occurring in two or more consecutive production cycles, lasting for at least two months each time. Again, this is a high bar.

High mortality can also be caused by short-lived events, such as storms, jellyfish swarms or human error. Poorly-sited or poorly-managed farms may experience elevated mortality many times, but with occasional better years in between. In neither case would those farms pass through to Stage 3.

The Government's analysts ought to check how many recurring high mortality events last less than two months, in case severe events are being filtered out unreasonably.

Stage 3: Persistence of mortality, due to the same causes in successive years

Stage 3 of the Government's analysis will filter out all farms where elevated and persistent mortality has occurred but where the causes were different in different cycles.

This approach has several flaws:

- It is wrong to exclude farms because the causes of mortality are not always the same. Farmed salmon can die for several reasons, all of which could be consequences of farms being poorly-sited or consistently poorly-managed, so high mortality may happen repeatedly but not always for the same reasons.
- The records of deaths caused by treatments administered by farmers are merged with those caused by the conditions being treated. As a result, the mortality data conceal the very large number of fish that die during and after physical, chemical and freshwater treatments, making it impossible to total all the deaths that are due to treatments.
- This approach seems to exclude some or all of the deaths that happen during the smolts' first six weeks at sea, as FHI exempts these from its mortality reporting requirements.¹⁴ In 2018, "smolt and transfer" made up more than 14% of all farmed salmon deaths at sea, according to a one-off analysis by the Farmed Fish Health Framework.¹⁵
- The mass mortality of cleaner fish does not feature in the FFHF's ten mortality cause categories. It is unclear whether they will be included in the Scottish Government's mortality analysis, even though at least seven million have died prematurely, mostly due to unknown causes, in Scotland's salmon farms since 2020.¹⁶
- Analysing the data in this way is prone to bias because of the ways that farmers and analysts can choose to assign different causes to complex, multifactorial mortality events.

Mass mortality is often due to a combination of reasons. If these were classed as different causes, then many farms would be filtered out at Stage 3.

It would be more realistic to class the cause of many (even most) multifactorial mass mortality events as "poor gill health leading to subsequent disease and treatment-related deaths". Assigning this umbrella cause would filter out far fewer farms.

The Government's methodology for Stage 3 is based on the ten mortality cause categories defined by the Government's Farmed Fish Health Framework (FFHF). These have been used by Salmon Scotland since 2018, in its monthly mortality reports. The Scottish Government's own records (kept by SEPA and FHI) go back to 2002 but they lack consistent reporting of causes of mortality.

The methodology statement says that AI has been used to retrospectively assign descriptions of the causes of mortality in the FHI data, to match the Government's Farmed Fish Health Framework and

¹⁴ <https://www.gov.scot/publications/fish-health-inspectorate-mortality-information/>

¹⁵ [An Analysis of the Causes of Mortality: Scottish Salmon Sector 2018-2020](https://www.gov.scot/publications/an-analysis-of-the-causes-of-mortality-scottish-salmon-sector-2018-2020/) Scottish Government FOI release. 9 Apr 2021

¹⁶ <https://www.theferret.scot/million-lice-eating-fish-died-at-salmon-farms/>

Salmon Scotland categories to these earlier records. This is prone to error, as the earlier FHI reports often give several causes for mortality events, without suggesting what proportion is due to each of them.

CCN believes that this third stage of the Government's methodology is too messy and too prone to bias, so it should be omitted altogether. Causes of death should not be used to filter out farms from the list of those that have recurrent high mortality. Instead, they should be analysed separately, with the results published annually, as happens in Norway.¹⁷

Stage 4: Giving farm operators a chance to explain why some farms have elevated persistent mortality

This will be informative but it should not be used to excuse the restocking of farms where many fish routinely die. For instance, some farmers are likely to argue that repeated, high levels of deaths due to sea lice and treatments are not their fault, after disease and jellyfish have harmed their fishes' gills. The alternative explanation is that persistent high levels of death under these quite common circumstances could be due to poor husbandry - a consequence of choosing to continue to farm fish in locations that are unhealthy.

Are there other ways to approach this?

Table 3, below, shows that simply listing farms in order of their production cycle mortality percentage can be used to show which have performed the worst, in particular those farms that appear towards the top of the lists in multiple years but which are rarely or never in the lower, healthier, sections of the lists.

¹⁷ For example - [Norwegian Fish Health Report 2024](#). Norwegian Veterinary Institute Report no 1b/2025

2018	2019	2020	2021	2022	2023	2024	to Nov 2025								
Inch Kenneth	56.2	Ardessie A	65.7	Leinish	78.5	Druimeyean Bay	82.3	East Tarbert Bay	60.2	Druimeyean Bay	82.3	Cuinacnoc	66.6	East of Papa Little	58.3
Bay of Vady	48.8	Maae	52.6	Cortarach	51.5	Vacasy	66.2	Nevis B	64.3	Loch Cannan	76.9	Soay	70.1	Sgeir Dughal	48.3
Gravin Outer	47.6	Ardessie B	50.6	Stone	41.5	Plocarpool	56.2	Vula Mor	61.4	Score Holms	57.6	Portree Outer	47.6	Portree Outer	47.6
North Voe	40.7	Lismore North	41.0	Calbha Bay	41.2	Sound of Harris	50.3	Scadabay	59.8	Dunstaffnage	56.5	Noster	58.7	Port of Holland	40.7
Vacasy	39.8	Loura Voe	41.1	ColedEEP	40.1	Reibinish	45.4	Greshornish	59.5	Greanamul	56.4	Tanera	56.4	Meall Mhor	39.8
Calbha Bay	39.6	Nevis C	40.9	Sgan Dubh	39.4	Kishorn B (North)	41.3	Kyles Vula	57.8	Setter	51.9	Geasgill	52.2	Muck	39.6
Taranish	39.4	Bagh Dail Nan Cean	40.7	Muck	39.6	Eptor Outer	36.1	Greanem	55.9	Stulairgh	51.7	Meil Bay	47.3	Usmore West (B)	39.4
Loch Aish	39.2	Loch Laxford	40.6	Grimsay	38.5	Loch Crean (B)	34.6	Noster	52.9	Hellsay	51.5	Camas Glas	42.8	Loch Hourn	39.2
Greshornish	38.4	Loch Spelvie (B)	40.6	Stulairgh	36.5	Glenan Bay	33.6	Camas Glas	50.0	Loch Aish	65.6	Colonsay	40.1	Loch a Chairn Bhain	38.4
Djubawick	37.8	Langa	37.2	Lismore East (Walters)	36.6	Loch Spelvie (B)	32.6	Nevis A	46.8	Poll Na Gille	50.4	Gometra	39.4	Portree	37.8
North Shore	35.3	Loch a Chainn Bain	37.3	Kyles Vula	36.3	Sgeir Dughall	32.0	Grey Horse Channel	44.2	Kerrera B (Charlotte Bay)	48.2	Grey Horse Channel	39.4	Djubawick	35.3
Isle Ewe	34.8	West of Burwick	35.6	Lochmaddy	36.1	Maae	30.0	Gravin Outer	42.3	Sound of Harris	48.2	Lochmaddy	36.2	Elive 3	34.8
Macleans Nose	34.6	North Papa	35.3	North Shore	35.2	Scadabay	29.9	Swarta Skerry	41.5	Loch Laxford	47.9	Bow of Hascosay	34.8	Turness	34.0
Stone	34.6	Grimsay	32.7	North Shore East	35.2	Maragay Mor	29.5	Eugham	41.2	North Skelwick	47.3	Portree	34.7	Greshornish	34.0
Burkawick	34.3	Treanay	32.6	North Voe	34.5	Aird	27.7	West Strome	39.1	Sian Bay	45.2	Ardirntoul	34.1	Kingairloch	34.3
Eugham	34.2	Holms Geo	31.9	Taranish	33.5	Torrion	26.4	Foraness	39.9	Gravir Outer	44.6	Loch Spelvie (B)	39.1	Stronodir Bay	34.3
Vula Mor	33.3	Kishorn B (North)	33.0	Vacasy	32.6	Bloody Bay	26.2	Seaforth	38.1	Stronodir Bay	44.5	Swining 3	33.0	Strome	33.0
Winn Ness	32.6	Tabhagh	31.5	Carradale North	31.6	Sconser Quarry	25.8	Loch Crean (B)	36.7	Eday	43.2	Sgan Dubh	32.9	Dunstaffnage	32.0
Treanay	32.0	Djubawick	31.1	Caolas a Deas East	31.4	Loch Laxford	25.6	Ardessie B	34.6	North Papa	41.3	Mad Ban	32.0	Mad Ban	32.0
Vula Beag	31.8	Groatay	29.7	Groatay	30.3	Holms Geo	25.5	Loch Spelvie (B)	34.3	Bight of Bellister	41.0	Eugham	32.4	Hogan	31.8
North Shore East	31.3	Lamlash	29.6	Trillechan Mor	28.9	Colonsay	25.4	Colonsay	34.2	Bow of Hascosay	40.8	Hunde	30.8	Aird	31.3
Loch Carnan	29.0	Score Holms	29.5	Greshornish	28.7	Lipple Geo	25.0	Ardessie A	34.1	Trorrion	39.1	Portree Outer	35.6	Bagh Dail Nan Cean	26.4
Portree	27.9	Eptor Outer	28.9	Swining 3	28.7	Colonsay	24.8	Ardrish	32.9	Kishorn A (South)	40.3	Scallastu	29.5	Stulairgh	27.0
Djubawick	28.7	Kenmore	28.6	Camas Glas	28.6	Stronodir Bay	24.1	Toyness	32.1	Investore	40.1	Kyles Vula	28.9	Loch Laxford	26.7
Nevis C	28.7	Grey Horse Channel	28.2	Isle Ewe	28.2	Stulairgh	22.2	Portree	39.6	Bay of Vady	39.5	Vula Mor	28.6	Uyea Isle	26.7
Kirkabister	28.2	Teisti Geo	27.7	Mangaster	27.2	Teisti Geo	21.5	Ardintoul	27.1	Stocks Ronas Voe	38.3	Ardyne	26.3	Scalpay	26.4
Druimeyean Bay	28.1	Lochmaddy	27.6	Carradale	27.8	Loch Carnan	21.1	Caolas a Deas West	24.4	Teisti Geo	37.2	East Mochlett	26.1	East Mochlett	26.1
Ardintoul	28.0	Fara West	27.2	Oldany	20.7	Oldany	20.7	Westerbister	23.7	Chalmers Hope	37.1	Foraness	37.1	Portree Outer	35.6
Bow of Hascosay	28.7	Maragay Mor	27.3	Setterness North	19.6	Setterness South	19.6	Colinlath 3	22.6	West of Burwick	37.1	West Strome	28.2	West Strome	28.2
Poll Na Gille	26.4	Bight of Bellister	26.2	Maol Ban	23.4	Maol Ban	19.0	Oldany	36.7	Macleans Nose	31.0	Ardgaden	23.1	Portree Outer	26.4
Uyea Isle	24.5	Colonsay	25.6	Snizort East	25.8	Loch a Chainn Bain	18.9	Reibinish	23.2	Mangaster	30.7	Plocrapool	22.3	Soay	22.9
Bonnie	24.5	Carradale North	25.6	Seaforth	23.2	Barberton South	18.1	Hellsay	23.0	Bastaness	22.0	Scatasy	22.6	Rum	24.5
Invasion Bay	23.9	Burkawick	25.7	Rum	25.5	Swarta Skerry	17.8	Nevis C	22.9	Loch Hourn	34.9	Westerbister	24.6	Carness Bay	23.9
South of Linga	23.3	Staid of Aithness	24.1	Lismore West (B)	17.7	Setterness North	17.8	Maragay Mor	33.5	Maragay Mor	33.5	Quarry Point	23.3	Quarry Point	23.3
Vula	23.1	Soay	24.0	Caolas a Deas	20.1	Caolas a Deas	19.6	Colinlath 3	22.6	North Voe	32.6	Setterness North	17.8	Maragay Mor	23.2
North Sandwick	22.9	Quarry Point	24.7	South of Linga	23.3	South West Shuna	16.9	Oldany	22.1	South Cava	32.0	Maragay Mor	23.2	Portree Outer	26.4
Wick of Vatsetter	22.6	Poll Na Gille	24.3	Wick of Belmont	23.3	Caithness	16.8	Reibinish	23.2	Wick of Belmont	31.0	Macleans Nose	22.4	Portree Outer	26.4
Carness Bay	22.2	Colonsay	24.0	Snizort East	23.2	Stronodir Bay	16.8	Hellsay	23.0	Ardrish	32.9	Portree Outer	26.4	Portree Outer	26.4
Bastaness	21.3	Trillechan Mor	22.6	Seaforth	23.2	Barberton South	18.1	Nevis C	22.9	Loch Hourn	34.9	Scatasy	22.6	Portree Outer	26.4
Vidlin	20.9	Staid of Aithness	20.5	Rum	25.5	Swarta Skerry	17.8	Maragay Mor	33.5	Maragay Mor	33.5	Portree Outer	26.4	Portree Outer	26.4
Swining 3	20.7	Teisti Geo	20.6	Lismore West (B)	17.7	Lismore West (B)	17.7	Colinlath 3	22.6	North Voe	32.6	Portree Outer	26.4	Portree Outer	26.4
Badcall	20.6	Grunna Voe	22.2	Setterness South	20.1	Sian Bay	16.5	Oldany	22.1	South Cava	32.0	Macleans Nose	22.4	Portree Outer	26.4
Hellsay	17.8	Loch Crean (B)	22.1	West of Linga	19.3	South Cava	16.1	Reibinish	16.3	Kishorn C (West)	25.9	Portree Outer	26.4	Portree Outer	26.4
Badcall	17.8	Vee Taing	21.2	Gorma	18.4	Caithness	16.8	Hellsay	16.0	Trorrion	25.0	North Sandwick	19.2	Quartermess	17.6
Duich	17.8	Vee Taing	21.2	Geasgill	18.4	Stronodir Bay	15.4	Ardrish	32.9	Ardrish	32.9	Trorrion	25.0	Taranish	19.1
Turness	16.8	Scatasy	21.0	Camas Glas	18.4	Caolas a Deas	15.3	Ornish	15.4	Ornish	15.4	Scatasy	25.0	North Kilbrannan	17.6
Quartermess	16.7	Midtaing	19.2	Portree	14.7	Wick of Vatsetter	14.7	Rubha Stillaig	15.0	Stocks Ronas Voe	15.1	Stocks Ronas Voe	15.1	Uyea Isle	18.5
Loch Spelvie (B)	14.5	Kempie Bay	18.6	Foraness	17.8	Wick of Vatsetter	14.7	Hunda	14.7	Mill Bay	29.5	Scatasy	17.7	Port Na Cro	16.9
South West Shuna	14.0	Finnary	18.6	Wick of Vatsetter	14.7	Rubha Stillaig	14.7	Hunda	14.7	Mill Bay	29.5	Stocks Ronas Voe	15.1	Shuna	16.8
Ormsay	14.2	Teisti Geo	17.1	Wick of Vatsetter	14.7	Stocks Ronas Voe	14.7	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	Lamtash	16.7
Stronsay East	14.2	East Tarbert Bay	14.6	Teisti Geo	17.1	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
Bay of Cleat (North)	12.2	Cloudin	14.8	Portree Outer	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
Hellsay	11.8	South Cava	12.2	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
Bloody Bay	11.8	Bagh Dail Nan Cean	15.5	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
Glenan Bay	11.6	Westerbister	10.2	Bagh Dail Nan Cean	15.5	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
Geasgill	11.4	Bay of Vady	14.7	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
Seaforth	11.0	Kishorn A (South)	14.3	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
Ardnish	11.1	Kerrera B (Charlotte Bay)	14.3	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
Chalmers Hope	10.7	Aird	14.3	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
Seaforth	10.6	Ness of Copister	13.6	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
Nest of Copister	10.6	Rainach	13.6	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
Finnary	10.6	Gorma	13.6	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
Nest of Copister	10.0	Chalmers Hope	13.6	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
Vestness	9.8	Sian Bay	13.4	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
Fishnish (B)	9.0	Corlarach	13.3	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
Ardrish	7.9	Dunstaffnage	13.1	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
Ardyn	7.9	Dunstaffnage	13.1	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
Shapinsay	7.5	Trillechan Mor	12.9	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
Westerbister	7.2	Lamlash	12.9	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
Flaeshins	7.0	Trillechan Mor	12.9	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
Corry Farm	6.9	Hellsay	12.9	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
Muck	6.9	Loch Carnan	12.9	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
ColedEEP	6.9	Quartermess	12.9	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
ColedEEP	6.9	Leven	12.9	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava	17.6	South Cava	16.7
ColedEEP	6.9	Wyre	12.9	Wick of Vatsetter	14.7	Teisti Geo	17.1	Maruilaig Bay	14.7	Maruilaig Bay	24.2	South Cava			

In 2024, Ben Hadfield (COO Mowi Scotland) wrote to the REC Committee to confirm that Mowi believes that overall average mortality of 15% is possible in marine salmon farms. It achieved this in its Scottish farms around 2011.¹⁸ Average mortality across the sector in Scotland has never been so low since then. For the 2022 smolt cohort it was 38%.

Table 4, below, shows the number and proportion of the farms completing their production cycle in a given year, that had production cycle mortality above 25%, above the average rate, and below 15%.

Year of completion of production cycle	2018	2019	2020	2021	2022	2023	2024	to Nov 2025
Total number of farms completing their cycle that year	94	119	99	120	89	107	73	81
Farms with over 25% of fish dying	31	36	34	21	26	48	32	14
% of farms with over 25% of fish dying	33%	30%	34%	18%	29%	45%	44%	17%
Farms above average mortality	44	55	43	45	34	45	29	33
% of farms above average mortality	47%	46%	43%	38%	38%	42%	40%	41%
Farms with under 15% of fish dying	38	49	44	71	40	39	21	33
% of farms with under 15% of fish dying	40%	41%	44%	59%	45%	36%	29%	41%

Table 4. Note that 2025's data is not for the complete year. Source: Salmon Scotland mortality reports

The number and percentage of farms with more than 25% of their fish dying is alarming, especially in marine heatwave years such as 2023.

In all years except 2021, fewer than half of farms managed to keep their overall mortality below 15%. There is a very long way to go before the industry could fulfil Mowi's hope that overall mortality at sea would again be as "low" as 15%.

In order to achieve an overall 15% mortality rate, Table 5, below, shows how many of the worst farms would have to be removed from each year's list, or would have to achieve 15% mortality themselves.

Year of completion of production cycle	2018	2019	2020	2021	2022	2023	2024	to Nov 2025
Number of farms removed to achieve 15% mortality over	22	24	19	2	20	40	34	11
Percentage of the farms completing prod. cycle that year	23%	20%	19%	2%	22%	37%	47%	14%

Table 5. Source: Salmon Scotland mortality reports

There are not just a few bad farms spoiling the good results of the others. Large numbers of farms, and a significant percentage, are contributing to the high mortality rates: as many as 40 of the farms that completed their cycles in 2023, and 47% of the farms that completed their cycles in 2024.

Combined with the earlier analysis of which farms repeatedly experience high mortality, this shows that it is possible and necessary to close or move the worst salmon farms.

¹⁸ [Salmon farming in Scotland. Follow up information from the RECC evidence session on 2 October 2024 with Salmon Scotland. 25 November 2024.](#)

Annex A of the Scottish Government's Interim update on activities in response to the Rural Affairs and Islands Committee report on 'Salmon Farming in Scotland'

Persistent Elevated Mortality in salmon farming in Scotland - Methodological approach

Introduction and background

In the RAIC's report on its follow-on enquiry (17 January 2025) it noted concerns on the levels of mortality in Scottish salmon production and made the following recommendation:

The Committee recommends, therefore, the Scottish Government provide powers to the Fish Health Inspectorate (or another appropriate body) to limit or halt production at sites which record persistent high mortality rates.

The Scottish Government committed to analyse existing mortality data in its response (13 March 2025), exploring thresholds for 'persistently high mortality' and to whether fish farms with 'persistently high mortality' exist. This annex provides an overview of the methodological development that has taken place over summer 2025 with a view to finalising the initial analysis later this year.

Methodological approach

To ascertain if any individual sites have experienced 'persistent high mortality' a robust, objective and reproducible analytical framework was developed to analyse available datasets.

The focus of this work is on marine sites where there are existing datasets. The Scottish Environment Protection Agency's (SEPA) monthly biomass and mortality reports (2003 - 2024) were employed for the analysis given the volume of information available at site level. Salmon Scotland monthly survival rates (2018–2024) and reports provided to Scottish Government Marine Directorate's (SGMD) Fish Health Inspectorate (FHI) were also integrated with the SEPA data as they provide detail on mortality cause and also ensure appropriate verification of outputs.

The novel model is designed in two stages, first identifying instances of 'elevated' and 'recurrent' mortality in the dataset using analytical methods.

Secondly, applying an Artificial Intelligence (AI) based large language model to categorise causes in the data to allow the model, with input from the professional expertise of the FHI, to determine if the 'recurrent elevated mortality' events were due to related causes and, therefore, if they are regarded as 'persistent', based on the available data.

Defining terms and undertaking screening

This process required 'elevated', 'recurrent' and 'persistent' mortality to be defined and then analytically identified. These definitions are described below and form part of sequential screening process that excludes site mortality data out with the qualifying parameters and ultimately aims to highlight production sites that may have experienced 'persistent elevated mortality'. That is the basis of the preliminary method development described below to complete the analysis.

The full summarised process is noted in Figure 1.

Elevated mortality

Mortality is deemed to be '**Elevated**' when it exceeds levels widely observed by farming Atlantic Salmon in Scotland. By exploring trends and average levels of mortality within SEPA's mortality dataset, we adopted an analytical approach that focuses on elevated mortality levels that it could, in practice, point towards production challenges such as unfavourable environmental conditions.

Percentiles are measures used in statistics to show the position of a value within a dataset. The analysis focuses on the 95th centile (5.68% monthly mortality) of the (i.e. the largest 5% of monthly mortality values) as the boundary for screening out 'elevated' mortality events and associated production sites for further analysis. This screening is applied to mortality data between 2018 and 2024 where there is corresponding data on mortality cause.

Recurrent mortality

Recurrence of mortality is defined as repeated **elevated** mortality events on the same site, irrespective of cause. Mortality is recurrent at a site where it is 1) consecutively elevated over a 2-month period **and** 2) two or more consecutive stocking cycles².

Persistent mortality

Persistent mortality is defined as the reoccurrence of mortality through the **same causal factors**. Factors causing mortality may be out of the control of the site management, or controllable but continued despite attempts to improve conditions, mitigate or eliminate the issue.

Establishing and assuring 'persistence'

Sites showing **recurrent** mortality are analysed alongside the mortality cause to determine if mortality is persistent (i.e. assess if the cause is the same). To do this systematically, a Large Language Model³ was developed to categorise mortality causes reported to SGMD. This analysed the free text information contained within SGMD returns to group mortality into cause categories. Mortality causes are wide ranging and complex and this novel approach aids standardisation of causes into several broad categories. The model can then robustly analyse the categories associated with the 'recurrent elevated' mortality and identify sites with related grouped causes. Where model outputs flag potential persistence based on grouped causes, these are then assessed by FHI to determine if the same individual cause(s) is the reason for the recurring mortality. Thus, the model identifies potential persistent mortality from the available data and serves as a tool to direct effort into exploring individual cases at the site level. This part of the process is currently being validated by the Fish Health Inspectorate (FHI) and Marine Directorate analysts.

Data Quality Assurance and Quality Control by the Scottish Government is needed and will aid the accuracy outputs and ensure integrity of the model outputs, prior to generating outputs.

² A stocking cycle is when a site is stocked with fish and grown onto harvest or transfer

³ A Large Language Model (LLM) is a type of computer programme that is trained on huge amounts of text so it can understand and generate human-like language

Understanding persistence under 'real world' conditions

To understand if sites screened as showing persistent elevated mortality through the quantitative approach described truly are persistent, discussions with site operators will be undertaken to provide additional context around the mortality experienced at these sites and mitigating actions taken by operators. Combined with the objective expertise of the Fish Health Inspectorate, this will enable a qualitative and consistent determination of whether a site truly has exhibited persistent elevated mortality.

Next steps

The Scottish Government will continue working at pace to deliver this analysis, including:

- Model validation and development with further Quality Assurance and Quality Control. Marine directorate scientists will submit a methods development paper through the peer review process this year, seeking to apply the highest academic scrutiny to the method.
- Upon completion of model validation, outputs will be generated and sites screened as potentially exhibiting persistent elevated mortality will be taken forward for 'ground truthing' with the FHI and producers.
- By Spring 2026 we will provide a full project report to the Rural Affairs and Islands Committee detailing both the finalised methods, the results of analysis, and the planned Scottish Government's response to these.

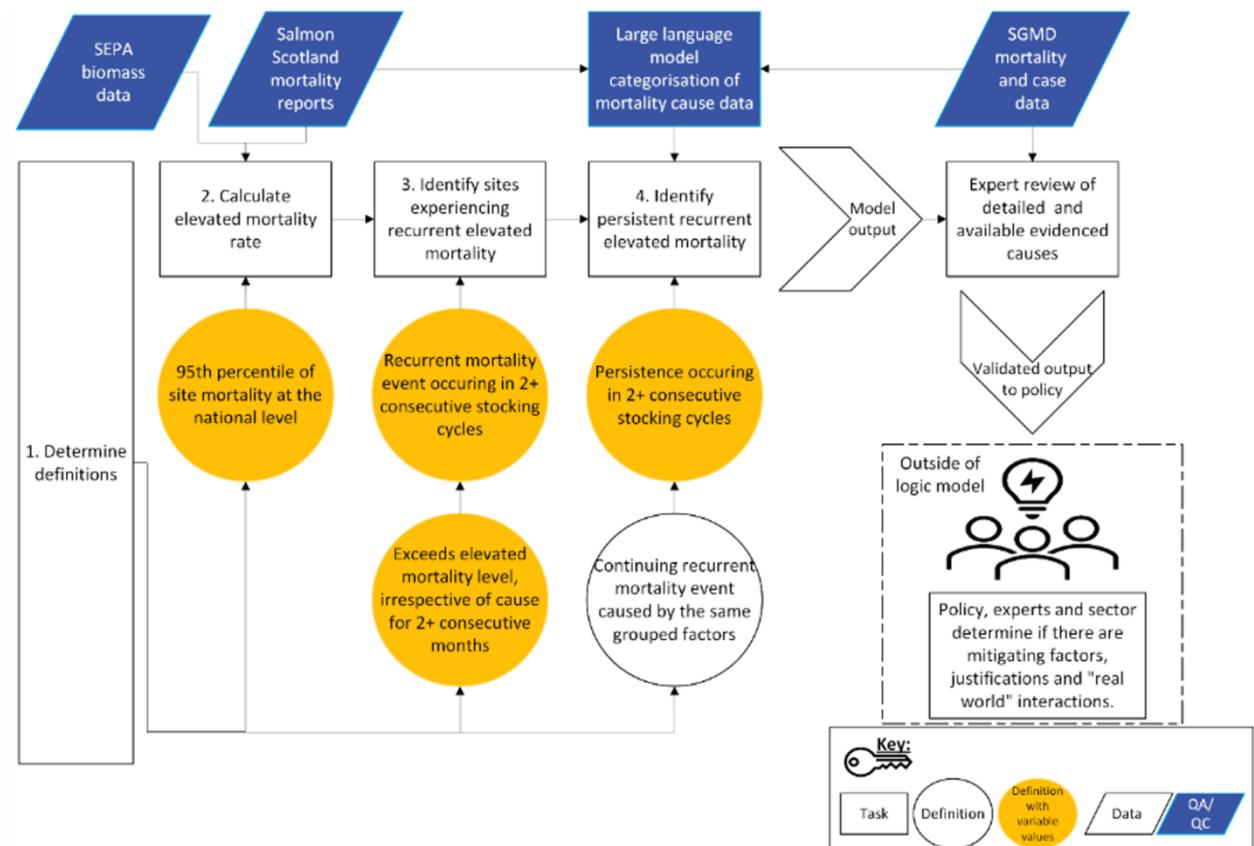


Figure 1. Process flow chart of persistent elevated mortality model, including different data sources, proposed definitions, through analysis to expert review and finally policy advice.